AI/GNN

[GNN] 3. Graph Representation Learning

땽뚕 2022. 1. 19. 17:00
728x90

 

[GNN] 3. Graph Representation Learning 

 

 

1. Graph란?

- 왜 Graph?

- Graph의 종류

- Graph의 표현

- Graph Tasks

- Graph의 Motif 

 

 

2. GNN 이전의 Machine Learning을 활용한 Graph 학습 

- Node Feature

  • Eigenvector centrality
  • Betweenness centrality
  • Closeness centrality
  • .....

- Link Feature

  • Distance-based feature
  • Local neighborhood overlap
  • Global neighborhood overlap

- Graph Feature

  • Graphlet kernel
  • Weisfeiler-Lehman Kernel 

 

3. Graph Representation Learning

- Node Embedding

- Graph Embedding 

 

 

4. GNN

- Recurrent Graph Neural Networks (RecGNNs)

- Convolutional Graph Neural Networks (ConvGNNs)

  • Spectral Model
  • Spatial Model 

- Graph AutoEncoders (GAEs) 

  • Network Embedding
  • Graph Generation

- Spatial-Temporal Graph Neural Networks (STGNNs)

  • CNN Based 
  • RNN Based
  • CNN & RNN based Model 
  • Attention based Model 

 

5. GNN의 Benchmark Datasets

- Citation Networks

- Biochemical Graphs

- Social Networks 

- Others

 

 

6. GNN Library

- Pytorch Geometric

- DGL 

 

 

 

 

 


 

 

 

 

Reference

https://velog.io/@tobigs-gnn1213/7.-Graph-Representation-Learning

 

7. Graph Representation Learning

Graph Representation Learning [작성자 : 신민정]

velog.io

https://velog.io/@tobigsgnn1415/Node-Embeddings

 

3. Node Embeddings

작성자:

velog.io

 

728x90