AI/GNN

[GNN] 2. GNN 이전의 Machine Learning을 활용한 Graph 학습

땽뚕 2022. 2. 13. 00:09
728x90

 

[GNN] 2. GNN 이전의 Machine Learning을 활용한 Graph 학습

 

 

 

1. Graph란?

- 왜 Graph?

- Graph의 종류

- Graph의 표현

- Graph Tasks

- Graph의 Motif 

 

 

2. GNN 이전의 Machine Learning을 활용한 Graph 학습 

- Node Feature

  • Eigenvector centrality
  • Betweenness centrality
  • Closeness centrality
  • .....

- Link Feature

  • Distance-based feature
  • Local neighborhood overlap
  • Global neighborhood overlap

- Graph Feature

  • Graphlet kernel
  • Weisfeiler-Lehman Kernel 

 

3. Graph Representation Learning

- Node Embedding

- Graph Embedding 

 

 

4. GNN

- Recurrent Graph Neural Networks (RecGNNs)

- Convolutional Graph Neural Networks (ConvGNNs)

  • Spectral Model
  • Spatial Model 

- Graph AutoEncoders (GAEs) 

  • Network Embedding
  • Graph Generation

- Spatial-Temporal Graph Neural Networks (STGNNs)

  • CNN Based 
  • RNN Based
  • CNN & RNN based Model 
  • Attention based Model 

 

5. GNN의 Benchmark Datasets

- Citation Networks

- Biochemical Graphs

- Social Networks 

- Others

 

 

6. GNN Library

- Pytorch Geometric

- DGL 

 

 

 


 

 

Node-level Feature

 

 

 

Link-level Feature

 

 

 

 

Graph-level Feature

 

 

 

 

 

 

 

Reference

 

https://velog.io/@tobigsgnn1415/Traditional-Methods-for-Machine-Learning-in-Graphs

 

2. Traditional Methods for Machine Learning in Graphs

Traditional Methods for Machine Learning in Graphs [작성자: 이성범]

velog.io

https://harryjo97.github.io/theory/Weisfeiler-Lehman-Algorithm/

 

Weisfeiler-Lehman Algorithm

Weisfeiler-Lehman Algorithm

harryjo97.github.io

https://davidbieber.com/post/2019-05-10-weisfeiler-lehman-isomorphism-test/

 

728x90