PEFT
-
LoRA: Low-Rank Adaptation of Large Language Models 논문 리뷰 (+ Adapter, Prefix Tuning)AI/NLP 2024. 6. 4. 13:16
LoRA: Low-Rank Adaptation of Large Language Models 논문 리뷰 최근에 나온 MoRA를 읽어보기 전에 LoRA 논문을 올리지 않은 것 같아, 이번 기회에 정리! 사용 방법에 대한 코드도 함께 정리해볼 예정이다 들어가기 전에 : PeFT의 등장 배경 Fully Fine Tuning Parameter-efficient approach세타는 오리지널 파라미터보다 훨씬 적은 양의 파라미터세타_0에 아주 작은 변화량 더해준다 => 이게 LoRA의 핵심이다 Abstract & Introduction Transfer learning의 붐이 시작된 이래로 수십 개의 연구에서 parameter와 compute-efficient하게 model adaptation..
-
"[SK TECH SUMMIT 2023] LLM 적용 방법인 RAG VS PEFT, Domain 적용 승자는?" 영상 리뷰AI/NLP 2024. 5. 21. 20:38
"[SK TECH SUMMIT 2023] LLM 적용 방법인 RAG VS PEFT, Domain 적용 승자는?" 영상 리뷰 목차 1. LLM 배경 2. 사내 적용 시 Challenge Point3. PEFT vs RAG4. 결론 PoC(Proof of Concept)를 진행하며 발견했던 부분들에 대해서 강연 ~새로운 기술, 서비스, 프로젝트, 신약 등이 실현 가능성이 있는지 검증하는 과정 OpenAI GPT의 경우 API 형태로만 공개해서 사용 시 제약사항이 있었지만, LLaMA를 오픈소스로 풀어서 우리가 잘 쓰고 있는 중 (땡스투Meta) 아래에서 본격적으로 PoC를 진행하며 고려해야 됐던 사항들 설명되었다 Challenge Point ChatGPT (API 형태의..
-
[2023 Spring NLP Seminar] On Transferability of Prompt Tuning for Natural Language Processing (NAACL 2022)AI/NLP 2023. 5. 10. 11:07
[2023 Spring NLP Seminar ] On Transferability of Prompt Tuning for Natural Language Processing (NAACL 2022) Abstract + Introduction 기존 연구 동향: 기존의 pre-trained language models (PLMs)은 파라미터 수가 매우 많아서 fine-tuning에는 많은 계산 자원과 시간이 필요했다. 이러한 문제를 해결하기 위해 Prompt Tuning (PT)이라는 새로운 방법이 제안되었다. PT는 매우 큰 PLMs를 활용하여 매우 적은 수의 소프트 프롬프트(prompt)만을 조정하여 전체 파라미터 fine-tuning 수행 결과와 비교 가능한 성능을 달성하는 방법이다. 기존 연구들의 한계: ..